Типы коллекторов нефти и газа

Классификация пород-коллекторов нефти и газа

По типам пустотных пространств различаются коллекторы поровые, трещинные, каверновые, порово-трещинные, порово-каверновые, порово-трещинно-каверновые. В природных условиях наиболее распространенными коллекторами нефти и газа являются поровые коллекторы – пески, песчаники, пористые известняки, доломиты. Каверновыми, порово-каверновыми коллекторами являются рифовые известняки (ракушняки, коралловые массивы), выветрелые, выщелоченные кавернозные известняки, дресва, гравелиты, галечники, конгломераты. К трещинным, порово-трещинным коллекторам относятся трещиноватые горные породы всех типов вплоть до гранитов, базальтов, глин и аргиллитов. Залежи нефти в трещиноватых аргиллитах баженовской свиты (верхняя юра) выявлены в Салымском районе Западной Сибири.

Наиболее популярной и часто применяемой в практике геологических работ является классификация пород-коллекторов по пористости и проницаемости, выполненная А.А.Ханиным (Табл.7). Горные породы, практически не проницаемые для нефти, газа и воды называются покрышками (экранами, флюидоупорами). К ним относятся глины, аргиллиты, плотные известняки, мергели, каменная соль, гипс, ангидриды и некоторые другие плотные породы. По ряду показателей различаются покрышки нескольких классов. К покрышкам наиболее высокого класса относятся каменная соль, гипсы, ангидриты и пластичные монтморилонитовые глины. На качество покрышек влияет однородность породы, минералогический состав, отсутствие примесей и трещин. Присутствие в глинах песчаных и алевритовых частиц существенно снижает экранирующие свойства покрышек. По размерам различаются покрышки регионального, зонального и локального рангов. Чем выше однородность и толщина пласта-покрышки, тем лучше его экранирующие качества.

Классификация песчано-алевритовых коллекторских

пород по пористости и проницаемости (по А.А.Ханину, 1973)

Класс коллектора

Эффективная пористость, %

Проницае-мость,

мкм2

I-очень высокий

Песчаник среднезернистый

>16.5

≥1

Песчаник мелкозернистый

>20.0

Алевролит крупнозернистый

>23.5

Алевролит мелкозернистый

>29.0

II-высокий

Песчаник среднезернистый

15-16.5

Песчаник мелкозернистый

18-19.0

0.5-1.0

Алевролит крупнозернистый

21.5-23.5

Алевролит мелкозернистый

26.5-29.0

III-средний

Песчаник среднезернистый

11-15

Песчаник мелкозернистый

14-18

0.1-0.5

Алевролит крупнозернистый

16.8-21.5

Алевролит мелкозернистый

20.5-26.5

IV-средний

Песчаник среднезернистый

5.8-11

Песчаник мелкозернистый

8-14

0.01-0.1

Алевролит крупнозернистый

10-16.8

Алевролит мелкозернистый

12-20.5

V-низкий

Песчаник среднезернистый

0.5-5.8

Песчаник мелкозернистый

2-8

0.001-0.01

Алевролит крупнозернистый

3.3-10

Алевролит мелкозернистый

3.6-12

VI-очень низкий, непромыш-ленный.

Песчаник среднезернистый

<0.5

<0.001

Песчаник мелкозернистый

<2

Алевролит крупнозернистый

<3.3

Алевролит мелкозернистый

<3.6

Карбонатные коллекторы

Спектр их типов  наиболее широк:

  • гранулярные, представленные обломочными и оолитовыми известняками;
  • трещинные, к которым относятся доломиты и плотные известняки;
  • кавернозные, образующиеся в результате карста;
  • биопустотные, представленные органогенными известняками.

К отличительным особенностям коллекторов карбонатного вида относятся их ранняя литификация, склонность с образованию трещин, а также  избирательная растворимость. Эти факторы  обусловливают разнообразие генезиса и морфологии пустотного пространства.

Качественные характеристики карбонатных коллекторов зависят от  первичных условий седиментации, а также от интенсивности и направления постседиментационной эволюции. Эти факторы влияют на  развитие дополнительных пор, трещин,  каверны и более крупных  полостей выщелачивания.

Для свойств карбонатных коллекторов характерны крайняя невыдержанность  и большое разнообразие, которое зависит  от фациальных условий, при которых происходило их образование. Это делает их сопоставление довольно затруднительным. Фациальные условия при формировании пород карбонатной природы на свойства коллекторов влияют в гораздо большей степени, чем при формировании  терригенных пород.

По своему минеральному составу породы карбонатного типа отличаются меньшим разнообразием по сравнению с терригенными, однако имеют больше структурно-текстурных разновидностей. Отличаются карбонатные коллекторы от терригенных и  по характеру происходящих в них преобразований в постседиментационный период. Это отличие заключается в степени уплотнения.

Поскольку остатки биогермов в карбонатных породах твердые с самого начала процесса эволюции, то  дальнейшее уплотнение протекает очень медленно.  Карбонатный ил и комковато-водорослевые карбонатные осадки с мелкими обломками литифицируются достаточно быстро. В результате  пористость немного сокращается, однако значительное поровое пространство как бы  «консервируется».

Этот показатель, при значительной мощности продуктивных горизонтов весьма значим при оценке величины полезного объёма пласта. Дополнительную ёмкость таких коллекторов обеспечивают стилолитовые швы, которые образуются вследствие неравномерного растворения минералов под действием давления. Глинистая корка на таких швах является нерастворимым остатком породы. Зачастую стилолитовые  горизонты наиболее продуктивны в разрезе, из-за процессов вымывания глинистых корок.

Нефтяной коллектор

Неприступная порода

В отрасли накоплен огромный арсенал методик и технологий, которые в большинстве случаев позволяют эффективно осуществлять поиск наилучших по качеству запасов терригенных коллекторов, а также управлять процессами добычи из них углеводородного сырья. Однако они начинают работать значительно хуже, когда речь заходит о карбонатах.

Наиболее частые проблемы, с которыми сталкиваются нефтяники, — это «сухие» скважины рядом с высокодебитными, быстрое обводнение скважин, прорывы газа, стремительное падение добычи. Эффективная разработка невозможна, если подходить к таким залежам с традиционным набором инструментов сейсморазведки, геофизических исследований скважин (ГИС) и геологического моделирования.


Типичные проблемы при разработке карбонатных коллекторов — быстрое обводнение скважин, прорывы газа, стремительное падение добычи

«Многие факторы и силы, которыми можно было пренебречь при исследовании и моделировании традиционных терригенных коллекторов, становятся важны», — объясняет начальник управления перспективных проектов «Газпромнефть НТЦ» Сергей Нехаев. Трещины могут быть длинными и короткими, частыми и редкими, идти параллельно или пересекать друг друга. От этого зависят размеры и форма отдельных блоков, на которые они делят породу — матрицу, а это, в свою очередь, влияет на соотношения разных сил (капиллярных, гравитационных), которые воздействуют на флюиды в коллекторе во время добычи нефти

Важно понимать и то, содержится ли нефть преимущественно в порах или в трещинах, а также какая из этих двух сред определяет фильтрацию нефти — ее движение в коллекторе во время добычи

Характерная особенность некоторых трещиноватых коллекторов состоит в том, что нефть может двигаться в них только в определенных направлениях — вдоль трещин. Это явление называют анизотропией. Если трещины, пронизывающие нефтяной пласт, уходят выше или ниже него в газовую шапку или водоносный слой, по таким разломам к нефтяным скважинам может прорываться газ или вода. Большое влияние на добычу оказывает и раскрытость трещин, которая может меняться при изменении давления. Учет всех этих особенностей карбонатных коллекторов требует очень высоких компетенций инженеров-нефтяников и тщательного подбора технологий для того, чтобы разработка таких запасов была эффективной. Для выявления трещиноватости и определения ее характеристик используют современные геофизические исследования скважин, нестандартные методики обработки и интерпретации данных сейсморазведки, специализированные исследования керна и гидродинамические исследования скважин.

Помимо трещин еще один важный фактор, влияющий на добычу и, в первую очередь, на подход к организации системы поддержания пластового давления, — смачиваемость коллектора. Породы бывают гидрофильными и гидрофобными. В первом случае вода хорошо смачивает поверхность породы, растекается по ней, образуя пленки. Во втором — наоборот, собирается в капли, будто бы отталкиваясь от поверхности. Обычно гидрофобные породы лучше смачиваются нефтью, чем водой.

Большинство карбонатных коллекторов — как раз гидрофобные или смешанного типа. Это означает, что в карбонатах для поддержания пластового давления и вытеснения нефти вода подходит плохо: нефть вытесняется только из крупных и средних пор, а в мелких ее удерживают капиллярные силы, вода между тем может прорваться к скважинам. Коэффициент извлечения нефти (КИН) при использовании традиционных методов повышения нефтеотдачи на таких коллекторах будет заметно ниже средних показателей. Для улучшения смачиваемости пород могут быть использованы различные химические добавки — растворы щелочных реагентов, поверхностно-активные вещества и др.

По программе

Для успешной работы с карбонатным — в особенности трещиноватым — коллектором, в отличие от типового терригенного, нужно комплексировать большой объем разнообразных данных. Задача новой технологической программы — найти оптимальный набор методов и инструментов, которые позволят наиболее эффективно работать с такими разнообразными и непредсказуемыми коллекторами.

В программе выделено три технологических вызова. Первый — управление смачиваемостью — связан с поиском методов повышения нефтеотдачи для гидрофобных пластов. Второй — управление фильтрацией в двойной среде — затрагивает вопросы о том, как управлять потоками нефти в сложном по структуре карбонатном коллекторе, какие данные необходимо учитывать, выбирая места для скважин, определяя режимы разработки и т.д. Третий вызов — повышение достоверности прогноза фильтрационно-емкостных свойств (ФЕС) — связан с поиском методов определения наиболее перспективных для бурения зон коллектора.

На решение этих вызовов направлены 12 технологических проектов, два из которых уже запущены. Так, на месторождении Куюмба началась реализация пилотного проекта по моделированию трещиноватости и определению зон, в которых лучше всего размещать скважины. А Чонский актив с его сложными засолоненными коллекторами стал пилотным для реализации проекта по интенсификации притока: здесь будут искать наиболее эффективные способы заставить породу отдать нефть.


Успешная разработка карбонатных коллекторов требует развития компетенций специалистов

В программе также обозначены этапы развития внутренней экспертизы по разработке карбонатов в «Газпром нефти». Для наращивания собственных компетенций компания взаимодействует с российскими и зарубежными нефтяными и нефтесервисными компаниями, а также с мировыми центрами экспертизы по карбонатным коллекторам.

«Первоочередная задача — повысить наши компетенции до уровня развития отрасли, — отмечает Андрей Яковлев, начальник департамента новых технологий по геологии и разработке „Газпромнефть НТЦ“. — У нас уже есть определенный опыт работы на карбонатных коллекторах, но пока он позволяет лишь сформулировать основные проблемы и вызовы. Нам нужно научиться правильно ставить задачи, чтобы получить максимальный эффект от сотрудничества с нефтесервисными компаниями и применять на наших активах оптимальные технологии».

Описание профессии

Лаборант-коллектор работает в нефтегазовой отрасли. Для успешного выполнения трудовых обязательств ему необходимо уметь работать с буровыми и цементными растворами, знать его состав, свойства. Также он взаимодействует с реагентами, поэтому должен знать технику безопасности.

Другие его обязанности связаны с обслуживанием лабораторного оборудования: проверка работы, настройка режимов, ремонтные и профилактические работы, снятие показаний. В случае обнаружения некорректной работы или неисправности лаборант-коллектор сообщает об этом вышестоящему руководству.

Кроме того, сотрудник должен быть осведомлен и о процессе бурения скважин, добыче нефти, газа или других полезных ископаемых.

В своей работе лаборант использует опасные вещества — реагенты. Поэтому предварительно ему необходимо пройти ряд проверок и аттестаций. Так, лаборанту придется пройти медицинское обследование, прослушать инструктажи по вопросам охраны и безопасности, а позднее – подтвердить полученные знания. При этом несколько недель лаборант проходит стажировку под кураторством более опытного сотрудника. Необходимо также отметить, что длительность стажировки решается руководителем и есть вероятность, что она продлится меньше.

Перед тем, как приступить к работе, лаборант должен проверить состояние своей спецодежды (халат, фартук, кожаная обувь, очки) на предмет повреждений, работоспособность вверенного оборудования, вентиляционную систему в лаборатории. При обнаружении поломки следует немедленно сообщить руководителю. Проводить любые исследования и эксперименты с неработающим оборудованием или некачественными средствами защиты категорически запрещено.

В процессе работы лаборант-коллектор должен следить за используемыми реактивами, проверять реакции образцов, ставить маркировку на используемые емкости и убирать их в специальные боксы. В конце рабочего дня лаборант должен привести свое рабочее пространство в начальное состояние, убрать все лишнее, отключить все приборы и сделать соответствующие записи в рабочем журнале.

При работе в лаборатории не исключены несчастные случаи, поэтому сотрудники проходят также специальное обучение на предмет оказания первой помощи при химических ожогах, отравлениях вредными веществами.

Коллекторские свойства горных пород

Рейтинг:   / 2

Горные породы, содержащие нефть, газ и воду и способные отдавать их при разработке, называются коллекторами.

 

Коллекторские свойства нефтеносных пластов зависят от размера и формы зерен, слагающих породу, степени отсорбированности обломочного материала, характера и степеней цементации осадков, а карбонатных пород — от пористости и трещиноватости.

Породы — коллекторы характеризуются

·         пористостью,

·         проницаемостью

·         трещиноватостью.

Пористость горной породы характеризуется наличием в ней пустот (пор), являющихся вместилищем для жидкостей (воды, нефти) и газов, находящихся в недрах Земли.

            Различают пористость:

·         общую,

·         открытую

·         эффективную

Общая пористость характеризуется разностью между объемом образца и объемом составляющих его зерен.

            Открытая пористость, или пористость насыщения, характеризуется объемом тех пустот, в которые может проникать жидкость (газ) при перепадах давлений, наблюдающихся в естественных пластах.

            Эффективная пористость — учитывает лишь объем открытых пор, насыщенных нефтью (или газом), за вычетом содержания связанной воды в порах.

            Промышленную ценность нефтяного месторождения определяется по проницаемости его пород — способности проникновения жидкости или газов через породу. Движение жидкостей или газов через пористую среду называется фильтрацией.

            Породы нефтяных и газовых залежей имеют капиллярные каналы, средний размер которых составляет 0.0002-0.5 мм.

            При эксплуатации нефтяных месторождений в пористой среде движется нефть, газ, вода или их смеси Поэтому для характеристики проницаемости нефтесодержащих пород различают проницаемость

·         абсолютную,

·           эффективную

·           относительную.

            Абсолютная проницаемость — проницаемость пористой среды при движении в ней лишь одной какой-либо фазы (газа или однородной жидкости).

            Эффективная (фазовая) — проницаемость породы для одной из жидкостей или газа при одновременной фильтрации различных жидкостей и газа.

            Относительная — проницаемость пористой среды, характеризующаяся отношением фазовой проницаемости этой среды к абсолютной.

К проницаемым породам относят пески, песчаники, известняки, к непроницаемым или плохо проницаемым породам — глины, глинистые сланцы, песчаники с глинистой цементацией и т.д.

Одно из важных свойств горных пород — трещиноватость, которая обуславливается густотой развития в них трещин. Трещинная проницаемость прямо пропорциональна густоте трещин в пласте.

< НазадВперёд >

Нефтяное месторождение

Нефтяное месторождение с десятками скважин. Это нефтяное месторождение Саммерленд , недалеко от Санта-Барбары, Калифорния , до 1906 года.

Mittelplate нефтяного месторождения в Северном море

Сланцевые ракеты Eagle Ford Shale, видимые из космоса (зеленые и инфракрасные волны) на дуге между цифрами «1» и «2», посреди городов на юго-востоке Техаса в 2012 году.

Нефтяное месторождение — это залежь нефти под поверхностью земли, заключенная в запечатанной полости непроницаемой породы. Фактически используемый на практике термин подразумевает возможность получения достаточной экономической выгоды, достойной коммерческого внимания. Во-вторых, область на поверхности выше, где нефть находится в ловушке под землей, также называется нефтяным полем.

Поскольку нефтяные резервуары обычно простираются на большую территорию, возможно, в несколько сотен километров в поперечнике, полная эксплуатация влечет за собой несколько скважин, разбросанных по территории. Кроме того, могут быть разведочные скважины, исследующие края, трубопроводы для транспортировки нефти в другие места и вспомогательные сооружения.

Поскольку нефтяное месторождение может быть удалено от цивилизации , создание месторождения часто является чрезвычайно сложной задачей с точки зрения логистики . Это выходит за рамки требований к бурению и включает сопутствующую инфраструктуру. Например, работникам требуется жилье, чтобы они могли работать на месте в течение месяцев или лет. В свою очередь, для жилья и оборудования необходимы электричество и вода. В холодных регионах может потребоваться обогрев трубопроводов. Кроме того, избыток природного газа может быть сожжен, если его невозможно использовать — для этого требуется печь, дымоход и трубы, чтобы транспортировать его от колодца к печи.

Таким образом, типичное нефтяное месторождение напоминает небольшой автономный городок посреди ландшафта, усеянного буровыми установками или домкратами, которые известны как « кивающие ослы » из-за их покачивающейся руки. Некоторые компании, такие как Hill International , Bechtel , Esso , Weatherford International , Schlumberger Limited , Baker Hughes и Halliburton , имеют организации, которые специализируются на крупномасштабном строительстве инфраструктуры и предоставлении специализированных услуг, необходимых для прибыльной эксплуатации месторождения.

Более 40 000 нефтяных месторождений разбросаны по всему миру, как на суше, так и на море. Самыми крупными из них являются месторождение Гавар в Саудовской Аравии и месторождение Бурган в Кувейте , каждое из которых оценивается более чем в 60 миллиардов баррелей (9,5 × 10 9 м 3 ) . Большинство нефтяных месторождений намного меньше. По данным Министерства энергетики США (Управление энергетической информации), по состоянию на 2003 год только в США насчитывалось более 30 000 нефтяных месторождений.

В современную эпоху расположение нефтяных месторождений с доказанными запасами нефти является ключевым фактором, лежащим в основе многих геополитических конфликтов.

Термин «месторождение нефти» также используется как сокращение для обозначения всей нефтяной промышленности . Однако более точно разделить нефтяную промышленность на три сектора: добыча (добыча сырой нефти из скважин и отделение воды от нефти), мидстрим (транспортировка нефти по трубопроводам и танкерам) и нисходящий поток (переработка, сбыт нефтепродуктов и транспортировка в другие страны). Нефтяные станции).

Система ПЛАСТ- СКВАЖИНА – НЕФТЕСБОРНЫЙ КОЛЛЕКТОР

Рейтинг:   / 6

При эксплуатации скважины движение пластовой жидкости осуществляется в  трех системах ПЛАСТ- СКВАЖИНА – КОЛЛЕКТОР, которые действуют независимо друг друга, при этом взаимосвязаны между собой.

Рассмотрим; эти системы

ПЛАСТ

Жидкости и газы находятся в пласте под давлением, которое называется пластовым. Пластовое давление — показатель, характеризующий природную энергию. Чем больше пластовое давление, тем большей энергией обладает пласт.

Начальное пластовое давление — давление в пласте до начала его разработки, как правило, находится в прямой связи с глубиной залегания нефтяного (газового) пласта и может быть определено приближенно по формуле :

Рпл.н=Нrg »104

где:     Рпл.н      — начальное пластовое давление

            Н                      — глубина залегания пласта

            r                      — плотность воды

            g                      — ускорение свободного падения (9.81 м/сек2)

            104                    — переводный коэффициент, Па.

            Обычно пластовое давление бывает больше или меньше вычисленного по формуле. Такое его значение определяют при непосредственных замерах глубинным манометром, которым обычно определяют забойное давление — давление на забое работающей или простаивающей скважины.

При эксплуатации скважины важнейшее значение имеет перепад давления на забое, которое является определяющим при работе скважины. Оно представляет собой разницу между пластовым давлением и забойным давлением.

Перепад давления = Рпл. – Рзаб.

Движение нефти начинается с какого – то расстояния, по мере движения к стволу скважины пластовой жидкости поток ее увеличивается, вследствие чего растет гидродинамическое давление. Наибольшего значения оно достигает в призабойной зоне пласта, равной 0.8 – 1.5 метра. Решающую роль играет забойное давление, чем ниже забойное давление, тем скважина может работать более продуктивно. Наибольший перепад давления в призабойной зоне пласта приводит к различным явлениям, например выпадение в осадок в этой зоне солей, твердых частиц, смол, асфальтенов, может возникнуть турбулентное движение жидкости. Все эти явления уменьшают течение жидкости из пласта и называются скин – эффектом.

Индекс продуктивности – J или PI представляет собой отношение дебита скважины к  перепаду давлений на забое. Индекс продуктивности  может быть как для нефти, так и для пластовой жидкости.

J = PI = qн / Рпл. – Рзаб.

Движение жидкости в коллекторе исследовано и происходит по закону Дарси и определяется по формуле при стабильном состоянии скважины

· при псевдо-стабильном состоянии скважины

Где μн  — вязкость пластового флюида

Rскв. – радиус скважины

k – проницаемость

S – скин

βн – пластовый объемный фактор

rзал – радиус зоны пласта откуда осуществляется добыча

h –мощность пласта

Формула Вогеля для нефтяной скважины

Формула для для пласта не имеющего нарушений и с добычей придавлении  ниже давления насыщения. Основывается на теории работы залежи в режиме растворенного газа.

Комбинированная формула Дарси- Вогеля для нефтяных скважин.

Максимальный дебит по комбинированной формуле Дарси- Вогеля:

Где        pнас  — давление насыщения

Qнас – дебит при котором забойное давление равно давлению насыщения

Из графиков и формул видно, что течение жидкости в пласте происходит по линейной зависимости при  давлениях выше давления насыщения. При давлениях ниже давления насыщения течение жидкости происходит по квадратичной зависимости. 

При движении жидкости по пласту наибольший перепад давления наблюдается в ПЗП зоне 1-2 метра перед зоной перфорации. В связи с этим наибольший ущерб пласту наступает именно в этой зоне.

< НазадВперёд >

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector