Воды океана

Рубрики

  • Oтдых на водах (120)
  • Аква стиль (81)
  • Ветер странствий (85)
  • Водные процедуры (45)
  • Вопросы — Ответы (78)
  • Гид (78)
  • Живая вода (146)
  • Животные (135)
  • Заповедники (133)
  • Здоровье (131)
  • Консультация (67)
  • Моря и океаны (238)
  • Мысли вслух (108)
  • Национальный парк (102)
  • Необходимо знать (359)
  • Новости (104)
  • Образ воды (67)
  • Озера и Реки (100)
  • Парад технологий (109)
  • Питьевая вода (71)
  • Планета Земля (184)
  • Поговорим по душам (178)
  • Путешествие в историю (70)
  • Растения (167)
  • Республика (146)
  • Решаем проблему вместе (104)
  • Рыбы (87)
  • Сад (171)
  • Свойства воды (76)
  • Скважины и колодцы (74)
  • События (115)
  • Туризм (188)
  • Увлечения и хобби (85)
  • Физическая География (115)
  • Фотоальбом (183)
  • Цветы и цветки (125)

Типы

Серфинг по каменистому дну с неровной поверхностью. Порто-Кову , западное побережье Португалии

Со временем развиваются три разных типа ветровых волн:

  • Капиллярные волны или рябь, в которых преобладают эффекты поверхностного натяжения.
  • Гравитационные волны

    Море, поднятые местами ветром.

    , в которых преобладают гравитационные и инерционные силы.

  • Волны , которые ушли от места, где они были подняты ветром, и в большей или меньшей степени рассеялись.

Волны появляются на гладкой воде, когда дует ветер, но быстро исчезнут, если ветер прекратится. Возвращающая сила, которая позволяет им распространяться, — это поверхностное натяжение . Морские волны представляют собой крупномасштабные, часто нерегулярные движения, возникающие при устойчивых ветрах. Эти волны, как правило, длятся намного дольше, даже после того, как ветер стих, а восстанавливающая сила, которая позволяет им распространяться, — это гравитация. По мере того, как волны распространяются от своей области происхождения, они естественным образом разделяются на группы с общим направлением и длиной волны. Наборы волн, сформированные таким образом, известны как зыби. Тихий океан является 19,800km от Индонезии до побережья Колумбии и, основываясь на средней длину волны 76.5m, будет иметь \ 258,824 набухает над этой шириной.

Отдельные « волны- убийцы» (также называемые «волнами-убийцами», «волнами-чудовищами», «волнами-убийцами» и «волнами короля») могут возникать намного выше, чем другие волны в состоянии моря . В случае волны Драупнера ее высота 25 м (82 фута) была в 2,2 раза больше высоты значительной волны . Такие волны отличаются от приливов и отливов , вызвано Луны и Солнца «s гравитационного притяжения , цунами , которые вызваны подводных землетрясений или оползней и волн , генерируемых подводных взрывов или падения метеоритов -Все , имеющие гораздо более длинные длины волн , чем ветровые волны.

Самые большие из когда-либо зарегистрированных ветровых волн — это не волны-убийцы, а стандартные волны в экстремальных морских условиях. Например, на RRS Discovery были зарегистрированы волны высотой 29,1 м (95 футов) в море со значительной высотой волны 18,5 м (61 фут), так что самая высокая волна была только в 1,6 раза больше высоты значительной волны. Самый большой зарегистрированный буй (по состоянию на 2011 год) был 32,3 м (106 футов) в высоту во время в от Тайваня.

Что влияет на рост уровня Мирового океана

Есть два основных фактора, которые оказывают влияние на повышение уровня воды — таяние ледников и нагрев морей и океанов.

Повышение температуры воды — большая проблема для всего мира на сегодняшний день. Когда вода становится теплее, она расширяется, то есть занимает больше пространства. Сейчас температура океанов на Земле самая высокая за все время наблюдения за ними. Мировой океан поглощает около 90% всего тепла, замедляя нагрев атмосферы.

Динамика средней глобальной температуры Мирового океана

(Фото: EPA / NOAA)

Беспокойство ученых вызывает и таяние ледников. За последние несколько десятилетий их потери увеличились в пять раз. Скорость таяния Гренландского ледникового щита выросла в семь раз с 1992 года, а Антарктиды — в шесть раз по сравнению с 1980-ми годами. Вклад таяния ледников (с небольшим учетом переноса подземных вод) в повышение уровня моря почти в два раза выше теплового расширения воды.

Как тают ледники Гренландии

Таяние морского льда уменьшает площадь белой поверхности и, соответственно, увеличивает площадь темной поверхности океана, которая хорошо поглощает солнечное излучение. Подсчитано, что заснеженный морской лед поглощает около 20% падающего на него солнечного излучения, тогда как свободная ото льда поверхность океана поглощает более 90%.

Таким образом происходит замкнутый круг: чем теплее становится океан, тем больше тают ледники, что ведет к еще большему поглощению тепла океаном. Минимальная протяженность морского льда в Арктике уменьшилась с 1979 года на 44%. При таких темпах, предупреждают авторы некоторых прогнозов, к середине этого столетия Арктика будет практически свободна ото льда в летние месяцы.

Влияние прилива

На образование волн влияет и уровень воды в океане. Он повышается дважды в сутки во время прилива.

Распространено заблуждение, что кататься нужно на приливе. Это неверно: у каждого спота свои условия для идеальных волн.

При отливе у новичков выше вероятность столкнуться с камнями на дне.

При максимальном приливе большие прибрежные волны затрудняют вход в океан.

Перед катанием стоит узнать особенности спота, расписание приливов.

Волны – таинственное и завораживающее явление природы. Идеальная волна для каждого серфера разная. Новички мечтают прокатиться дольше, не падая; кто-то – ехать с поворотами по ровной стене волны, скользить вниз с высоченного гребня, двигаться внутри стремительной круглой трубы.

Но все мечтают почувствовать себя могущественным укротителем бушующей стихии, победившим страх и преодолевшим неумение и слабость!

Приливы и отливы

Приливами и отливами называются циклические изменений уровня
воды в мировом океане под воздействием гравитационной силы солнца или луны.
Отмечают, что сила солнечного притяжения в два раза меньше, чем лунного,
поэтому солнечные приливы и отливы проходят практически незаметно. Поскольку воды
океанов и морей составляют ¾ от всего объема гидросферы, влияние ближайшего
спутника земли на водные ресурсы интересует ученых на протяжении многих лет.

Несмотря на частоту и заметность этого явления приливы и
отливы не несут существенной угрозы, кроме судов, которым приходится заходить
на материковые реки по каким-либо причинам. В этом случае, игнорирование цикла
изменения высоты воды в мировом океане способно привести к крушению или
серьезным повреждениям.

Человечество пытается приспособить силу приливных волн для
получения энергии, поскольку доля вод мирового океана в гидросфере составляет
70,8%, но пока это направление развивается очень медленно и неохотно.

Цунами

Цунами

Цунами — это волны огромной разрушительной силы. Они вызываются подводными землетрясениями или извержениями вулканов и могут пересекать океаны быстрее, чем реактивный самолет: 1000 км/ч. В глубоких водах они могут быть ниже одного метра, но, приближаясь к берегу, замедляют свой бег и вырастают до 30-50 метров, прежде чем обрушиться, затопляя берег и сметая все на своем пути. 90% всех зарегистрированных цунами отмечено в Тихом океане.

Наиболее распространённые причины.

Около 80% случаев зарождения цунами являются подводные землетрясения. При землетрясении под водой происходит взаимное смещение дна по вертикали: часть дна опускается, а часть приподнимается. На поверхности воды происходят колебательные движения по вертикали, стремясь вернуться к исходному уровню, — среднему уровню моря, — и порождает серию волн. Далеко не каждое подводное землетрясение сопровождается цунами. Цунамигенным (то есть порождающим волну цунами) обычно является землетрясение с неглубоко расположенным очагом. Проблема распознавания цунамигенности землетрясения до сих пор не решена, и службы предупреждения ориентируются на магнитуду землетрясения. Наиболее сильные цунами генерируются в зонах субдукции. Также, необходимо чтобы подводный толчок вошёл в резонанс с волновыми колебаниями.

Оползни. Цунами такого типа возникают чаще, чем это оценивали в ХХ веке (около 7 % всех цунами). Зачастую землетрясение вызывает оползень и он же генерирует волну. 9 июля 1958 года в результате землетрясения на Аляске в бухте Литуйя возник оползень. Масса льда и земных пород обрушилась с высоты 1100 м. Образовалась волна, достигшая на противоположном берегу бухты высоты более 524 м. Подобного рода случаи достаточно редки и, не рассматриваются в качестве эталона. Но намного чаще происходят подводные оползни в дельтах рек, которые не менее опасны. Землетрясение может быть причиной оползня и, например, в Индонезии, где очень велико шельфовое осадконакопление, оползневые цунами особенно опасны, так как случаются регулярно, вызывая локальные волны высотой более 20 метров.

Вулканические извержения составляют примерно 5% всех случаев цунами. Крупные подводные извержения обладают таким же эффектом, что и землетрясения. При сильных вулканических взрывах образуются не только волны от взрыва, но вода также заполняет полости от извергнутого материала или даже кальдеру, в результате чего возникает длинная волна. Классический пример — цунами, образовавшееся после извержения Кракатау в 1883 году. Огромные цунами от вулкана Кракатау наблюдались в гаванях всего мира и уничтожили в общей сложности более 5000 кораблей, погибло около 36 000 человек.

Признаки появления цунами.

  • Внезапный быстрый отход воды от берега на значительное расстояние и осушка дна. Чем дальше отступило море, тем выше могут быть волны цунами. Люди, которые находятся на берегу и не знающие об опасности, могут остаться из любопытства или для сбора рыбы и ракушек. В данном случае необходимо как можно скорее покинуть берег и удалиться от него на максимальное расстояние — таким правилом следует руководствоваться, находясь, например, в Японии, на Индоокеанском побережье Индонезии, Камчатке. В случае телецунами волна обычно подходит без отступления воды.
  • Землетрясение. Эпицентр землетрясения находится, как правило, в океане. На берегу землетрясение обычно гораздо слабее, а часто его нет вообще. В цунамоопасных регионах есть правило, что если ощущается землетрясение, то лучше уйти дальше от берега и при этом забраться на холм, таким образом заранее подготовиться к приходу волны.
  • Необычный дрейф льда и других плавающих предметов, образование трещин в припае.
  • Громадные взбросы у кромок неподвижного льда и рифов, образование толчеи, течений.

Теории происхождения Мирового океана

Принято считать, что происхождение океанической воды глубинное. Согласно этой теории, она была образована во время дифференцировки первичного вещества Земли. Ныне она представляет собой раствор неорганических солей, концентрация которого сильно варьируется от региона к региону и зависит от множества внешних факторов. Этот раствор поступает к мантии планеты во время извержения вулканов по областям глубинных разломов.

Колебания уровня океанов на протяжении миллионов лет находились в зависимости от движений тектонических плит, изменениям глубины и объёма впадин, образованием и таянием на материках гигантских ледяных покровов. Для ранних периодов истории планеты хронология изменений уровня Мирового океана выяснена ещё не полностью, но последний миллион лет наивысший и самый низкий уровни воды океана имеют довольно точную датировку.

Наука, к сожалению, ещё достаточно далека от разгадки величайшей тайны в истории – тайны появления жизни. Но тщательное изучение истории Мирового океана способно пролить свет на некоторые аспекты данной проблемы. Уже полученные данные помогают в решении самых сложных задач, которые также входят в вопрос о зарождении всего  живого. Так, например, выяснена и детально изучена роль океанов в процессах биологической эволюции. Учёные весьма убедительно продемонстрировали, что зародившаяся жизнь с океанскими водами была тесно взаимосвязана: она не только зависела от них, но и стала мощным преобразователем всей Земли, поскольку из-за жизнедеятельности уже существовавших водных организмов значительно менялся качественный и количественный состав всей гидросферы.

Самые крупные споры возникают при обсуждении образования и формирования дна океана. В отношении данной проблемы разработано несколько интересных концепций. С течением времени они несколько видоизменяются, поскольку с результатами всё новых исследований приходят свежие данные о том или ином аспекте каждой, а также отпадают нежизнеспособные теории.

Так, к примеру, гипотеза о формировании рельефа дна Тихого океана в результате отрыва от Земли ещё части, которая в дальнейшем превратилась в Луну, была опровергнута. Современные представления об этом, как правило, основываются на информации об особенностях движения земной коры под океанами и распределении геофизических полей.

Морские геологи достигли невероятных успехов в изучении слоёв осадочных пород на дне, а также физический и географических условий, в которых эти слои образовывались. Дня некоторых периодов удалось просчитать температуры Мирового океана в разных его регионах, солёность воды, её циркуляцию. Стало возможным представить общую схему развития основной части гидросферы на протяжении практически всего её существования, Постепенно становятся известными многие занятные подробности, которые способствуют восполнению пробелов в знаниях об истории великого земного океана.

Обзор всех указанных выше причин течений

Указанные выше причины, возбуждающие передвижение воды в океане, сводятся к трем условиям: влиянию разностей давления атмосферы, влиянию разностей плотности морской воды и влиянию ветра. Влияние вращения Земли на оси и влияние берегов могут только видоизменять характер уже существующих течений, но сами по себе два последние обстоятельства никаких движений воды возбудить не могут.

Влияние разностей давления атмосферы никаких значительных течений возбудить не может. Остаются две следующие причины: разности плотностей морской воды и ветер.

Разности плотностей в океане всегда существуют, а следовательно, всегда стремятся привести частицы воды в движение. При этом разности плотностей действуют не только в горизонтальном направлении, но и в вертикальном, возбуждая конвекционные течения.

Ветер, согласно современным взглядам, не только обуславливает возникновение поверхностных течений, но также служит причиной происхождения течений и на разных глубинах до самого дна. Таким образом, значение ветра, как возбудителя течений, в последнее время расширилось и стало более всеобщим.

Материал, которым располагает океанография, по распределению плотностей в разных местах и на разных глубинах в океанах еще очень мал и недостаточно точен; но на основании его уже можно сделать попытку определить численно (по способу Бьеркнеса) те скорости течений, какие разность плотностей может возбудить в поверхностных слоях океанов.

На основании меридионального разреза через Северное Экваториальное течение Атлантического океана было определено, что существующая между 10 и 20° с. ш. разность плотностей могла бы произвести течение со скоростью 5—6 морских миль в 24 часа. Между тем наблюдаемая в этом месте средняя суточная скорость Экваториального течения около 15—17 морских миль. Если вычислить скорость того же Экваториального течения, соответствующую только влиянию ветра (принимая скорость NE пассата в 6,5 м в секунду), то получится суточная скорость течения в 11 морских миль. Сложив эту величину с 5—6 морскими милями суточной скорости, обусловленной разностью плотности, получим наблюдаемые 16—17 морских миль в сутки.

Приведенный пример показывает, что ветер, по-видимому, оказывается более важной причиной возбуждения течений на «поверхности океана, нежели разность плотностей. Подобный же пример для Балтийского моря еще более убедителен, он показывает, что даже и там, где на малых расстояниях разности плотностей очень велики, все-таки влияние ветра имеет большее значение для возникновения течений (см

стр. 273, течения Балтийского моря)

Подобный же пример для Балтийского моря еще более убедителен, он показывает, что даже и там, где на малых расстояниях разности плотностей очень велики, все-таки влияние ветра имеет большее значение для возникновения течений (см. стр. 273, течения Балтийского моря).

Наконец, самое существование смены муссонных течений, а также некоторое передвижение и изменение течений тропической полосы во всех океанах в зиму и лето того же полушария показывают еще раз большое значение ветров для существующей системы течений. Перемещение метеорологического экватора с временами года, конечно, сказывается на распределении температуры воды (см. главу о температуре), а следовательно, и на распределении плотности воды, но эти изменения очень невелики; изменения же в системе ветров, вызываемых перемещением метеорологического экватора, очень значительны.

Таким образом, из этих трех причин течений надо признать, что ветер представляет одну из важнейших. На это указывают многие обстоятельства; несомненно, что если бы ветер не существовал, то возникшие в океанах системы течений очень значительно отличались бы от существующих.

Тут будет уместно указать, что в океане существует много течений с водами совершенно различных плотностей, идущих рядом, и, несмотря на то, между ними, однако, вовсе не образуется обмена воды.

Наконец, все течения идут по ложу, образованному водами океана, всегда обладающими совершенно иными физическими свойствами, нежели воды самих течений; однако и при этих условиях течения продолжают существовать и двигаться, не смешивая немедленно своих вод с соседними. Конечно, такое смешение вод их происходит, но оно совершается очень медленно и в значительной мере обуславливается образованием водоворотов при движении одного слоя воды по другому.

Основные течения Мирового океана

Тихий океан

Мощнейшие течения Тихого океана сформированы пассатами — постоянными ветрами, дующими от тропиков к экватору. Северное и Южное пассатные течения гонят массы воды в сторону Евразии и Австралии.  

Схема течений Тихого океана

Достигая восточных берегов континентов, воды расходятся вдоль побережья. Часть воды возвращается на восток, образуя Межпассатное противотечение. Основная масса воды Северного пассатного течения устремляется к северу, образуя тёплое течение Куросио, а воды Южного движутся на юг, становясь Восточно-Австралийским течением.

В умеренных широтах течения подхватывают западные ветры и направляют их на восток. В Северном полушарии возникает тёплое Северо-Тихоокеанское течение, а в Южном — Течение Западных Ветров. 

Достигнув восточных краёв океана, воды возвращаются к экватору, двигаясь вдоль побережья Северной Америки (Калифорнийское течение) и Южной Америки (Перуанское течение). 

У экватора течения вновь подхватываются пассатом, завершая круговорот.

Атлантический океан

Поскольку Атлантический океан вытянут по вертикали, его основные течения также направлены с севера на юг и обратно. 


Схема течений Атлантического океана‍

Как и в случае с Тихим океаном, течения Атлантики образуют кольца в Северном и Южном полушариях.  

В Северном полушарии Северное пассатное течение гонит воду к берегам Центральной Америки, где зарождается тёплое течение Гольфстрим, движущееся в сторону Европы к Северному полюсу, откуда воды возвращаются к экватору холодным Канарским течением. Так в северной части Атлантики происходит циркуляция течений по часовой стрелке. 

В Южном полушарии потоки океанических вод направлены против часовой стрелки: Южное пассатное течение, достигая берегов Южной Америки, движется на юг вдоль континента, становясь тёплым Бразильским течением. У берегов Антарктиды оно разворачивается на восток, вливаясь в течение Западных Ветров. Затем вода возвращается к экватору вдоль западного берега Африки, гонимая холодным Бенгельским течением. 

Индийский океан

Особенность Индийского океана — изменчивые течения в его северной части. Они подчинены муссонам — ветрам, которые меняют направление в зависимости от сезона. 


Схема течений Индийского океана‍

Зимой северо-восточный муссон несёт воды из Бенгальского залива к Африке, где течение поворачивает на юг, и достигнув области экватора, возвращается на восток, создавая Экваториальное противотечение. Затем, достигнув Суматры, течение разделяется на два потока: первый движется на север, замыкая круговорот, а второй устремляется в Тихий океан.

Летом течения направляются в обратную сторону, с запада на восток, при этом противотечения не возникает. Юго-западный муссон гонит воду на север, образуя холодное Сомалийское течение, которое впоследствии объединяется с Южным пассатным.

Южный круговорот не зависит от сезона и действует без изменений. Южный пассат направляет воду к Мадагаскару, где образует два потока, огибающие остров. При этом часть воды возвращается на восток через противотечение. 

Затем южный поток направляется в Атлантический океан и вливается в Течение Западных ветров. У западного побережья Австралии от него отделяется течение, возвращающее воду в район экватора, где её вновь подхватывает Южный пассат.   

Северный Ледовитый океан

Поскольку большая часть Северного Ледовитого океана находится подо льдом, о его течениях известно немного. 

Основным проводником тепла является Норвежское течение — продолжение Гольфстрима. В районе 67 параллели оно разделяется на Нордкапское и Шпицбергенское течения. 

Нейтральное Трансарктическое течение формируется благодаря стоковым водам с Аляски и севера Азии. Оно движется от Чукотского моря к полюсу по направлению к Гренландии. Примечательно, что его температура такая же, как у окружающей воды. 

Холодное Восточно-Гренландское течение берёт начало от моря Лаптевых и движется вдоль восточного берега Гренландии, после чего через Датский пролив устремляется в Атлантический океан. 

Анатомия волны

Периодическое колебание вод относительно положения равновесия называется волной.

У нее выделяют следующие элементы:

  • подошва – нижняя плоскость;
  • гребень (лип, от английского lip – губа);
  • фронт – линия гребня;
  • труба (tube/barrel) – участок, где гребень смыкается с подошвой;
  • стенка (wall) – наклонная часть, по которой скользит серфер;
  • плечо – участок, где стенка становится пологой;
  • пик – точка падения волны;
  • impactzone – место, куда обрушивается лип.

Из-за изменчивости волн измерять их чрезвычайно трудно. Оценивают колебания несколькими параметрами.

Высота – расстояние от подошвы до гребня. Измеряют ее по-разному. В сводках для серферов указывают перепад в колебании метеорологических буев. Иногда высоту волны указывают в «ростах».

Так как спортсмен скользит по волне, согнувшись, 1 «рост» равен приблизительно 1,5 метра.

Длина – расстояние между смежными гребнями.

Крутизна – отношение высоты к длине волны.

Период – время между двумя волнами в группе (сете).

Как происходит повышение уровня воды

Динамика повышения среднего уровня Мирового океана по годам. Синяя линяя — измерения с помощью прибора мареограф, оранжевая линия — измерения со спутников

(Фото: U.S. Global Change Research Program (USGCRP))

Основной причиной довольного резкого роста уровня воды стало повышение глобальной температуры, вызванное человеческой деятельностью. Согласно подсчетам ученых из Национального управления океанических и атмосферных явлений США (NOAA), даже при низких выбросах парниковых газов к 2100 году уровень моря с большой вероятностью поднимется как минимум на 30 см от значения 2000 года.

Если мировое сообщество никак не повлияет на объемы выбросов, то через 80 лет можно ожидать повышения уровня Мирового океана на 2,5 метра. Например, 80% территории Мальдивских островов находится на отметке в один метр над уровнем моря, то есть государство может вовсе уйти под воду.

Возможные сценарии повышения уровня моря в зависимости от выбросов парниковых газов (синий цвет — низкий уровень эмиссии, красный — экстремальный)

(Фото: National Oceanic and Atmospheric Administration (NOAA))

Свойства воды мирового океана. Водные массы. Движения воды в мировом океане. Морские течения

Дата: 01.03.2020

Категория:
Общая география (6 класс)
Пользователь Олег Александрович

Свойства воды Мирового океана

Соленость. В водах Мирового океана содержится 4/5 всех растворимых веществ. В воде океана встречаются соли магния, а также алюминия, серебра, золота. Соленость измеряется в промилле (‰), что показывает, сколько граммов соли растворено в одном литре воды (4‰ → 4 г соли в 1 литре воды).

Соленость воды Мирового океана не везде одинакова:

  • самая высокая в Красном море и Персидском заливе – 42 ‰;
  • самая низкая в Балтийском море – 2–10‰;
  • средняя составляет 35‰.

Соленость зависит от таких факторов:

  • интенсивности испарения,
  • количества атмосферных осадков,
  • рек, впадающих в океан,
  • циркуляции вод и т.п.

Температура. Меняется зонально – от экватора до полюсов, от поверхности вглубь, от побережья к центральным частям океанов.

Изменение температуры с глубиной:

1. От поверхности вглубь температура воды резко снижается в течение первых 100 м

2. Далее на 2° С на каждые 1000 м

3. На глубине более 4000 м температура воды почти везде составляет 0°С.

4. Температура придонного слоя воды повышается до + 2°С (вещество мантии нагревает относительно тонкую океаническую земную кору).

Океаническая вода замерзает при температуре –2° С, чем выше соленость воды, тем ниже температура замерзания.

Водные массы. Движения воды в мировом океане. Морские течения

 

Водная масса – большой подвижный объем воды, который отличается соленостью и температурой.

 

Различают такие водные массы:

1. Экваториальные (теплые и малосоленые),

2. Тропические (высокий уровень солености),

3. Умеренные (прохладительные, малосоленые),

4. Полярные (холодные, низкий уровень солености).

 

Основные свойства водных масс — соленость и температура

Основные свойства Типы водных масс
экваториальные тропические умеренные полярные
Температура, °С +26…+28 +18…+27 +12…+24 -1,8…+5
Солёность, ‰ 33 — 35 36 — 38 34 — 35 32 — 34

Водные массы меняются с глубиной

  • до 200 м – поверхностные,
  • от 1000–2000 м – промежуточные,
  • до 4500 м – глубинные и придонные.

Виды движений воды в океане

I. Океанические течения – горизонтальные перемещения водных масс в определенном направлении на большие расстояния. Основной причиной образования океанических течений является действие ветра. Поэтому направления крупнейших течений соответствуют главным воздушным течениям планеты.

Так, с 30–х широт дуют постоянные ветры – пассаты; течения, вызванные этими ветрами, называют пассатными (Южная Пассатная и Северная Пассатная).

Сточные течения, вызванные стоком излишков воды, принесенной пассатными течениями.

В умеренном поясе морские течения формируются под влиянием западных ветров (течение Западных ветров).

В северном и южном полушариях в области 50–й паралели образуются два больших круга движения воды в океане, морские течения образуют циклональный и антициклональний круговороты (влияние отклоняющих силы Земли – силы Кориолиса). Они существуют во всех океанах, кроме Северного Ледовитого.

В океане различают теплые и холодные течения.

Течение считают холодным, если температура воды в течении ниже температуры окружающих океанических вод, если вода течения теплее, чем окружиющие воды – течение считают теплым. Теплые течения в тропических широтах движутся вдоль восточного побережья материков, холодные – вдоль западного. В умеренных широтах наоборот: теплые течения – на западе материков, холодные – на востоке.

II. Ветровые волны. При образовании ветровой волны водная масса не двигается, а лишь изменяется вертикальный уровень водной поверхности. Высота ветровых волн составляет в среднем 4 м, в морях она ниже, чем в открытом океане. Наибольшая высота волны примерно 30 м. Длина штормовых волн до 250 м. Ветровые волны на побережье морей и океанов осуществляют значительную разрушительную и аккумулятивную (накопительную) работу.

III. Приливы и отливы – периодические поднятия и понижения уровня воды в Мировом океане под действием силы тяжести Солнца и Луны. Самый высокий уровень приливов фиксируется у побережья Северной Америки в заливе Фанди (до 18 м). Энергию приливов и отливов человек использует в хозяйственной деятельности.

IV. Цунами – гигантские волны, которые образуются в результате действия внутренних процессов Земли (землетрясений, извержения подводных вулканов и т.п.). Цунами распространяются во все стороны от места возникновения и охватывают всю толщу воды от дна до поверхности. Средняя скорость цунами 700–800 км/ч. Высота цунами в открытом океане незначительная – 1 м при длине волны 100–200 м, поэтому они почти не заметны. При приближении к земле высота такой волны увеличивается до 20 м и выше.

Как же возникают бродячие волны?

Одна из основных версий — столкновение поверхностных потоков постоянных морских течений со встречным ветровым волнением. Подобное явление обычно наблюдается там, где встречаются океаны — у мысов Горн и Доброй Надежды. Неслучайно блуждающие волны часто называют еще и кейпроллерами (от английского caperoller — огибающие мыс). Районы встречи холодных и теплых течений также попадают в зону риска, так что вероятность встречи с волной-убийцей представляется достаточно высокой у полуострова Лабрадор, на подходах к Гвинейскому заливу, к востоку от Японии и у юго-восточного побережья Австралии. 

Но как в этом случае объяснить появление блуждающих водяных гор на относительно закрытых акваториях — например, в Мексиканском заливе, в Северном и Средиземном морях или на Великих озерах?

Приверженцы классической волновой теории предпочитают объяснять этот феномен с помощью механизма интерференции. Суть его состоит в наложении волн, при котором из нескольких сравнительно небольших образуется одна гигантская. Скептики же отмечают, что в таком случае волны-убийцы должны встречаться гораздо реже, чем это происходит на практике и документально подтверждается спутниковыми снимками. Одного лишь линейного сложения размеров и амплитуд для этого недостаточно, а значит речь может идти о своеобразном «энергетическом вампиризме». Сторонники этой версии утверждают, что при определенных внешних условиях морские волны приобретают способность обмениваться кинетической энергией. 

«Волна-вампир» постепенно высасывает энергию из своих соседок, что может привести к резкому (и неожиданному для стороннего наблюдателя) увеличению ее размеров. 

После достижения критической высоты «вампир» мгновенно сбрасывает накопленную энергию, чем и объясняются сразу две особенности блуждающей волны — сила удара и краткий срок ее видимого для человеческого глаза существования.

Еще одна группа исследователей пытается совместить изучение линейных и нелинейных свойств волн с углубленным анализом особенностей окружающей среды. При этом они выделяют следующие необходимые условия, которые с высокой степенью вероятности приводят к формированию бродячей волны:

  • Наличие близкой области пониженного давления.
  • Резкие изменения направления и скорости ветра.
  • Движение волн в пересекающихся направлениях (толчея).
  • Топографические особенности берега или подводного рельефа, способствующие изменению направления волн.
  • Наличие последовательного ряда из десяти так называемых эффективных волн, высота которых на 20–30% выше средней по району.
  • Особая форма гребней волн и ее изменение.

Заметим, что при внимательном рассмотрении все перечисленные «открытия» оказываются обычными факторами риска в штормовом (или предштормовом) море. В большинстве своем они давно известны яхтенным капитанам, но, к сожалению, не добавляют понимания природы бродячей волны.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector